Stickelberger ideals and Fitting ideals of class groups for abelian number fields

نویسندگان

  • Masato Kurihara
  • Takashi Miura
چکیده

In this paper, we determine completely the initial Fitting ideal of the minus part of the ideal class group of an abelian number field over Q up to the 2-component. This answers an open question of Mazur and Wiles [11] up to the 2-component, and proves Conjecture 0.1 in [8]. We also study Brumer’s conjecture and prove a stronger version for a CM-field, assuming certain conditions, in particular on the Galois group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Structure of Ideal Class Groups of CM - Fields dedicated to Professor K . Kato on his 50 th birthday

For a CM-field K which is abelian over a totally real number field k and a prime number p, we show that the structure of the χ-component AχK of the p-component of the class group of K is determined by Stickelberger elements (zeta values) (of fields containing K) for an odd character χ of Gal(K/k) satisfying certain conditions. This is a generalization of a theorem of Kolyvagin and Rubin. We def...

متن کامل

On the Structure of Ideal Class Groups of CM - Fields

For a CM-field K which is abelian over a totally real number field k and a prime number p, we show that the structure of the χ-component AχK of the p-component of the class group ofK is determined by Stickelberger elements (zeta values) (of fields containing K) for an odd character χ of Gal(K/k) satisfying certain conditions. This is a generalization of a theorem of Kolyvagin and Rubin. We defi...

متن کامل

Some New Ideals in Classical Iwasawa Theory

We construct an analogue of the Stickelberger ideal for real abelian fields by means of cyclotomic units and a Kummer-type pairing with values in a completed p-adic group-ring. We give several different descriptions of this ideal, prove the analogue of Stickelberger's Theorem using Thaine's methods and establish links with certain Fitting ideals in a particular case. Our construction fits into ...

متن کامل

Hilbert-Speiser number fields and Stickelberger ideals

Let p be a prime number. We say that a number field F satisfies the condition (H ′ pn) when any abelian extension N/F of exponent dividing p has a normal integral basis with respect to the ring of p-integers. We also say that F satisfies (H ′ p∞) when it satisfies (H ′ pn) for all n ≥ 1. It is known that the rationals Q satisfy (H ′ p∞) for all prime numbers p. In this paper, we give a simple c...

متن کامل

Lubin-Tate Formal Groups and Local Class Field Theory

The goal of local class field theory is to classify abelian Galois extensions of a local field K. Several definitions of local fields are in use. In this thesis, local fields, which will be defined explicitly in Section 2, are fields that are complete with respect to a discrete valuation and have a finite residue field. A prototypical first example is Qp, the completion of Q with respect to the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010